
Figure 1: The architecture of STOs.
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ABSTRACT

We present an approach to agent modeling of
socio-technical organizations based on the
principles of semiotics. After reviewing complex
systems theory and traditional Artificial Life
(ALife) and Artificial Intelligence (AI)
approaches to agent-based modeling, we introduce
the fundamental principles of semiotic agents as
decision-making entities embedded in artificial
environments and exchanging and interpreting
semiotic tokens. We proceed to discuss the design
requirements for semiotic agents, including those
for artificial environments with a rich enough
“virtual physics” to support selected self-
organization; semiotic agents as implementing a
generalized control relation; and situated
communication and shared knowledge within a
community of such agents. We conclude with a
discussion of the resulting properties of such
systems for dynamical incoherence, and finally
describe an application to the simulation of the
decision structures of Command and Control
Organizations.

1. MOTIVATION

Our world is becoming an interlocking collective
of Socio-Technical Organizations (STOs): large
numbers of groups of people hyperlinked by
information channels and interacting with

computer systems, and which themselves interact
with a variety of physical systems in order to
maintain them under conditions of good control.
Primary examples of STOs include Command
and Control Organizations (CCOs) such as
911/Emergency Response Systems (911/ERS) and
military organizations, as well as utility
infrastructures such as power grids, gas pipelines,
and the Internet. The architecture of such systems
is shown in Fig. 1, where a physical system is
controlled by a computer-based information
network, which in turn interacts with a
hierarchically structured organization of semiotic
agents.



The potential impacts on planetary economy and
ecology are just beginning to be understood.
The vast complexity and quantity of information
involved in these systems makes simulation
approaches necessary, and yet the existing
formalisms available for simulation are not
sufficient to reflect their full characteristics. In
particular, simulations built on strict formalisms
such as discrete-event systems cannot capture
the inherent freedom available to humans
interacting with such systems; and simulations
built on formal logic, such as most Artificial
Intelligence (AI) approaches, are too brittle and
specific to allow for the emergent phenomena
which characterize such complex systems. 

We pursue an approach to agent modeling which
aims squarely between collective automata
systems typically used in Complex Systems and
Artificial Life (ALife), and knowledge-based
formal systems as used in AI. This approach
provides a robust capability to simulate
human-machine interaction at the collective level.
We identify this approach as Semiotic Agent-
Based Modeling, as it expands the existing
Agent-Based Model (ABM) approach, as
typically  used in Complex Systems, with
mechanisms for the creation, communication, and
interpretation of signs and symbols by and
between agents and their environments. 

2. COMPLEX SYSTEMS AND AGENT-BASED
MODELS

Many researchers are pursuing the hypothesis that
ABMs are a highly appropriate method for
simulating complex systems.

A complex system is commonly understood as
any system consisting of a large number of
interacting components (agents, processes, etc.)
whose aggregate activity is non-linear (not
derivable from the summations of the activity of
individual components), and typically exhibits
hierarchical self-organization under selective
pressures. 

While almost all interesting processes in nature
are cross-linked to some extent, in complex
systems we can distinguish a set of fundamental
building blocks which interact non-linearly to
form compound structures or functions. Together
these form an identity whose understanding

requires different explanatory modalities from
those used to explain the building blocks. This
process of emergence results in the need for
modes of description which are complementary. It
is also known as hierarchical self-organization;
complex systems are often defined as those which
have this property [Pattee, 1973]. 

Examples of complex systems in this sense are
genetic networks which direct developmental
processes, immune networks which preserve the
identity of organisms, social insect colonies,
neural networks in the brain which produces
intelligence and consciousness, ecological
networks, social networks comprised of
transportation, utilities, and telecommunication
systems, as well as economies.

Recent developments in software engineering,
artificial intelligence, complex systems, and
simulation science have placed an increasing
emphasis on concepts of autonomous and/or
intelligent agents as the hallmark of a new
paradigm for information systems. Hype has led to
the situation where we can identify nearly
anything as an agent, from software subroutines
and objects, through asynchronous or separately
threaded processes, to physically autonomous
robots, AI systems, organisms, all the way to
conscious entities.

We can recognize two strands of development of
the concept of agent in modeling and simulation.
The first school draws on examples of complex
phenomena from biology such as social insects
and immune systems. These systems are
distributed collections of large numbers of
interacting entities (agents) that function without
a "leader." From simple agents, which interact
locally with simple rules of behavior, merely
responding befittingly to environmental cues and
not necessarily striving for an overall goal, we
observe a synergy which leads to a higher-level
whole with much more intricate behavior than the
component agents, e.g. insect colonies and
immune responses. 

Most such complex systems have been shown to
be members of a broad class of dynamical
systems, and their emergent phenomena shown to
be forms of dynamical attractors (a now classical
example is the work of Kauffman [1990]). More
famously, ALife [Langton, 1989], a subset of



Complex Systems Research, produced a number
of models based on simple agent rules capable of
producing a higher-level identity, such as the
flocking behavior of birds, which were called
Swarms. In these models, agents are typically
described by state-determined automata: that is,
they function by reaction to input and present
state using some iterative mapping in a state
space. Such ABMs can be used, for instance, to
simulate massively parallel computing systems.

The ABM approach rooted in Complex Systems
Research contrasts with the other strand, which
draws from AI. In this field, the goal was usually
the creation and study of a small number of very
complicated actors endowed with a great deal of
on-board computational intelligence and planning
ability dedicated to solving specific tasks, with
little or no room for emergent, collective behavior.

3. SEMIOTIC AGENT-BASED MODELS

It has become clear in recent years that the
modeling of phenomena such as ecological
systems, and social systems such as STOs,
requires elements of both the Complex Systems
and the AI approaches. First, large human
collective systems clearly manifest emergent
complex behavior: the emergent constraints
created by the coarse dynamics of interaction
among agents can dominate overall system
behavior and performance.

But a complex systems approach is not sufficient
to model social systems. Rather, to model these
systems appropriately we need agents whose
behavior is not entirely dictated by local, state-
determined interaction. A globalized human
society, which impacts on planetary ecology, is
empowered and driven by language and
hyperlinked by information channels. Its agents
have access to and rely on accumulated
knowledge which escapes local constraints via
communication, and is stored in media beyond
individual agents and their states. Indeed, many if
not most researchers in AI, Cognitive Science, and
Psychology have come to pursue the idea that
intelligence is not solely an autonomous
characteristic of agents, but heavily depends on
social, linguistic, and organizational knowledge
which exists beyond individual agents. 

Such agents can be characterized as situated
[Clark, 1997]. It has also been shown that agent
simulations which rely on shared social
knowledge can model social choice more
accurately [Richards et al. 1998]. We turn to
semiotics, or the general science of signs and
symbols, because the presence of representations
in such systems is so important. Such
representations, either stored internally to the
agent or distributed through agent-environment
couplings, can be of measured states of affairs,
goal states, and possible actions.

Originally a sub-field of linguistics [Eco 1986],
semiotics has come to become more prominent
first in text and media analysis, and then in
biology, computer engineering, and control
engineering [Meystel 1996]. Semiotic processes
involve the reference and interpretation of sign
tokens maintained in coding relations with their
interpretants. Thus semiotics in general is
concerned with issues of sign typologies,
d ig i t a l / a n a l o g  a n d  s ymb o l i c / i c o n i c
representations, the “motivation'' (intrinsic
relations of sign to meaning) of signs, and
mappings among representational systems [Joslyn
1995, 1998; Rocha, 1998b, 1999].

Since models of STOs amount to modeling social
networks, our agent designs need to move beyond
state-determined automata by including random-
access memory capabilities. Our agents are
systems capable of engaging with their
environments beyond concurrent state-determined
interaction by using memory to store descriptions
and representations of their environments. They
also have access to shared knowledge amongst the
members of their particular agent society. Such
agents are dynamically incoherent in the sense
that their next state or action is not solely
dependent on the previous state, but also on some
(random-access) stable memory that keeps the
same value until it is accessed and does not
change with the dynamics of the environment-
agent interaction. In this sense, our agent designs
create ABM which bridges traditional Artificial
Life ABM and AI knowledge-based approaches.

4. DESIGN REQUIREMENTS FOR SEMIOTIC
AGENTS

As we mentioned above, there are a variety of
senses of the term “agent” available the literature



today, deriving from, for example, biology,
robotics, ALife, and AI, and having applications
in information systems, dynamical systems
simulation, and natural systems simulation. In this
section we lay out our sense of Semiotic Agents
(SAs), and make a principled argument about the
necessary components for SAs interacting  with
each other and within artificial environments.

First, what are the necessary components of
agents in general? Commonly cited properties
include asynchrony, interactivity, mobility,
distribution, etc. In general, we can see that an
agent must possess some degree of independence
or autonomy, and gain identity by being
distinguishable from its environment by some
kind of spatial, temporal, or functional boundary
[Joslyn 1998, 1999]. In seeking out a specific and
useful sense of "agent", we require that they have
some autonomy of action, an ability to engage in
tasks in an environment without direct external
control. 

Thus our concept of an SA distinguishes agents
specifically as decision-making systems. These
have a sufficient freedom over a variety of
possible actions to make specific predictions of
the outcomes of their actions. Clearly this class
includes AI systems, but leaves out many simpler
collective automata or state-transition systems
typical of ALife. However, as discussed above,
we are interested not in individual agent decision-
making capabilities, but rather in the complex,
emergent, collective behavior of populations of
decision-making agents with access to simple
personal and shared knowledge structures. That is,
we propose multi-agent system designs that use
techniques from AI, but in an enlarged Alife
setting. 

We thereby further distinguish SAs from pure
decision-making algorithms [Wolpert et al. 1999],
in that they are embedded in (hopefully rich)
virtual environments in which they take actions
which have consequences for the future of the
agents themselves. These environmental
interactions induce constraints on the freedom of
decision-making on the part of the SAs, and
produce emergent behavior not explicitly defined
in the agents’ (decision-making) rules of behavior.

4.1 Artificial Environments: The Selected
Self-Organization Principle

In ABM, agents interact in an artificial
environment. However, it is often the case that the
distinction between agents and environments is
not clear. In contrast, in natural environments, the
self-organization of living organisms is bound and
is itself a result of inexorable laws of physics.
Living organisms can generate an open-ended
array of morphologies and modalities, but they
can never change these laws. It is from these
constant laws (and their initial conditions) that all
levels of organization we wish to model, from life
to cognition and social structure, emerge. These
levels of emergence typically produce their own
principles of organization, which we can refer to
as rules, but all of these cannot control or escape
physical law and are “neither invariant nor
universal like laws” [Pattee, 1995, page 27].

For ABM to be relevant for science in general, the
same distinctions that we recognize in the natural
world between laws and initial conditions
determined in the environment, and emergent
rules of behavior of the objects of study, need to
be explicitly included in an artificial form. Thus
the most important consideration is that simulated
agents operate within environments which have
their “laws of nature” or “virtual physics”. From
these, different emergent rules of behavior for
agents can be generated and studied. As we have
argued elsewhere [Rocha and Joslyn, 1998], these
need to be explicitly distinguished in artificial
environments. 

Once this distinction is recognized, then the
freedom of decision making which the SAs have
is necessarily constrained by these environmental
dynamics which are, for them, necessary. Such
constraints can be, in fact, crucial for the
development of emergent properties within agent
systems embedded in those environments. For
example, Gordon, Spears, et al. [1999] have
simulated distributed sensor grids exploiting an
agent model interacting with an environment
which manifests a certain limited virtual physics.
They have shown that they can achieve hexagonal
or square grids based on the dynamics of the agent
interactions with those “natural laws''. Similarly,
Pepper and Smuts [1999] have demonstrated the
development of cooperative and altruistic
behavior in simulated ecologies, but only when
the environment had a rich enough “texture'' of
simulated vegetative diversity.  



Therefore, the setup of environments for multi-
agent simulations needs to:

i Specify the dynamics of self-
organization: specify the laws, and their
initial conditions, which characterize
the artificial environment (including
agents) and the emergence of context-
specific rules. For example, in
Lindgren’s [1991] experiments, the laws
of the environment are the conditions
specified in the iterated prisoner’s
dilemma and a genetic algorithm – these
are inexorable in this model. The
context-specific rules are the several
strategies that emerge whose success
depends on the other strategies which
co-exist in the environment and
therefore also specify its demands
together with the laws. However, the
same laws can lead to different
transitory rules, and thus, different agent
environments. 

ii Observe an emergent or specify a
constructed semantics: identify
emergent or pre-programmed (but
changeable) rules that generate agent
behavior in tandem with environmental
laws. In particular, we are interested in
the behavior of agents that can simulate
semantics and decision processes. As an
example consider the experiments of
Hutchins and Hazlehurst [1991] which
clearly separate between the laws of an
environment (the regularity of tide and
moon states) and the artifacts used by
agents to communicate the semantics of
these regularities among themselves.
The semantics of the artifacts are not
pre-specified but emerge in these
simulations.

iii Provide pragmatic selection criteria:
create or identify a mechanism of
selection so that the semantics identified
in ii is grounded in a given environment
defined by the laws of i. These selection
criteria are based on constraints
imposed both by the inexorable laws of
the environment and the emergent rules.
When based only on the first, we model
an unchanging set of environmental
demands (explicit selection), while

when we include the second, we model
a changing set of environmental
demands instead (implicit selection).
The first are often implemented by a
Genetic Algorithm (GA) with fixed
evaluation function, while the second
with a GA whose evaluation function
emerges from agent interactions [e.g.
Ackley and Littman, 1991].

These three requirements establish a selected self-
organization principle [Rocha, 1996, 1998a]
observed in natural evolutionary systems. This
principle is also essential to model the emergence
of semantics and decision processes in ABM
which can inform us about natural world
phenomena. This is because without an explicit
treatment or understanding of these components in
a simulation, it is impossible to observe which
simulations results pertain to unchangeable
constraints (laws), changeable, emergent,
constraints (rules), and selective demands. It is
often the case in Artificial Life computational
experiments that one does not know how to
interpret the results – is it life-as-it-could-be or
physics-as-it-could-be? If we are to move these
experiments to a modeling and simulation
framework, then we need to establish an
appropriate modeling relation with natural agent
systems which are also organized according to
laws, rules, and selection processes.

4.2 Semiotic Agents

SAs as we see them need to be based on a few
fundamental requirements. The primary internal
components of semiotic agents involve a series of
representations, in particular representations of
the current state and past states (the agent's
"beliefs"), and the goal state (its "desires"). This
is partly motivation for usage of the term
"semiotic", since we draw from a number of
principles from this general science of
representations. 

i Measurement. Only certain aspects of
the environment are measurable by
agents, and this repertoire forms the
potential field of knowledge for the
agent, its "world as perceived". 

ii Capacity to evaluate current status.
Since a goal of ABM of social systems
is to study decision processes, our



agents need to include a means to
describe their own preferences and
beliefs about their perceived world.
Thus agents need to have separate
behavior components for action and
evaluation. The evaluation component is
used by the agent to judge, based on its
own beliefs, its current status in the
environment and then influence the
action component. These components
can be created and/or evolved
independently. In this way we can
model agents with different,
independent beliefs about their present
state and desirable goals. This capacity
is present in the agents of Ackley and
Littman[1991] (which are similar to
those of Werner and Dyer [1991] and
Hutchins and Hazlhurst [1991]).
However, our evaluation components
are further constrained by shared
knowledge structures and situated
communication below (v and vi).

iii Stable, decoupled memory. To model
more realistically decision processes,
and achieve greater dynamical
incoherence between agents and
environments, we need to move from
state-determined behavior components
and endow agents with larger, random-
access, memory capacity. This implies
the storage of a set agents’ interactions
in memory to aid its evaluation and
action behavior (ii). These memory
banks persist and can be accessed at any
time by the agent, not depending on its
current state or the state of the
environment.

iv Asynchronous behavior. In our models,
agents do not simultaneously perform
actions at constant time-steps, like
cellular automata or boolean networks.
Rather, their actions follow discrete-
event cues or a sequential schedule of
interactions. The discrete-event setup
allows for inter-generational
transmission of information, or more
generally, the cohabitation of agents
with different environmental experience
[Ackley and Littman, 1991; Werner and
Dyer, 1991]. The sequential schedule
setup, formalized by Sequential
Dynamical Systems (SDS) [Barrett et

al., 1999], allows the study of different
influence patterns among agents, which
are very important in studying decision
processes in social networks. The latter
are ideal for mathematical treatment as
different schedules can be studied in the
SDS framework, while the former
require statistical experimentation as the
collective behavior of discrete-event
agents in an environment with
stochastic laws and rules cannot be
easily studied mathematically. 

These four design requirements cast SAs as
decision-making systems, but embedded in the
artificial environment and endowed with action
capabilities with respect to that environment. Thus
in turn the possible decisions that agents can make
must be considered relative to those possible
actions. The result of all of this is that SAs can be
cast in terms of a generalized control
architecture, as in the work of Powers [1973,
1989], where the autonomy of the system is
allowed by its manifestation of a closed causal
relation with its environment. Through this
relation the agent makes decisions so as to make
its measurements (representations of current and
past decisions and states) as “close” as possible to
its goals in order to reduce a generalized “error
function” given by its own beliefs of what
desirable states are. Thus, as illustrated in Fig. 2,
SAs manifest a generalized negative feedback
control relation. 



Figure 2: Semiotic agents as maintaining a
generalized control relation with their environments.

Furthermore, the dynamical incoherence of SAs
allows a degree of freedom from
state-determined responses, thus endowing them
with a limited form of deliberation or election,
the autonomy of action necessary for emergent
agent-based models of collective social
behaviors. The asynchrony requirement allows
also for more realistic social agent interaction,
where decisions are taken by integrating the
decisions of others and the co-existence of
agents with different experiences is allowed. 

4.3 Situated Communication and Shared
Knowledge

While in the previous subsection we have
described the properties and capabilities of SAs in
isolation or in interaction with the artificial
environment, we also require their interaction
through the production, transmission, and
interpretation of informational tokens. Thus the
decision-making and communication abilities of
SAs observe the two additional design
requirements:

v Situated Communication.
Communication among agents is based
on the existence of environmental
tokens and regularities which follow the
laws of the environment and agent rules,
not merely unconstrained, oracle-type,

universal channels [Hutchins 1996;
Hutchins and Hazelhurst 1991]. Both
within and between agents, knowledge
about the environment will be
represented by distinct tokens in certain
modalities, perhaps qualified by
uncertainty structures. Tokens can be
created, transmitted, received, stored,
and (most importantly) interpreted by
agents. Tokens created from
measurement processes can simply be
stored in memory or interpreted directly
by the agent, either currently or at a
later time. Tokens need not be simple,
atomic units, as elements of a set, but
can also be at least somewhat complex,
for example simple graph-theoretical
structures or uncertainty-weighted
atoms or distributions.

vi Shared and cultural nature of
language and knowledge. We require
that agents share a certain amount of
knowledge. In this way, agents are not
completely autonomous entities with
their own understanding of their
environments. We are interested in
studying social systems which strongly
rely on shared knowledge expressed in
public languages. Often in agent-based
models agents reach decisions relying
solely on “personal” rules and
knowledge-bases. This autonomous
view of agency is unrealistic when it
comes to modeling cognitive and social
behavior, as ample evidence for the
situated nature of cognition and culture
[Clark, 1997; Richards et al, 1998; Beer,
1995; Rocha, 1999]. Therefore, our
agents build on the graph structures
used by Richards et al. [1998] to model
shared knowledge. In particular we
expand this framework with the
asynchrony (iv) and situated
communication (v) agent design
requirements. We also study emergent
shared knowledge structures. SAs make
use of shared knowledge in addition to
personal knowledge which exists in the
form of beliefs and goals described in ii,
which can be built-in or emergent rules
as discussed in 4.1.ii. 



5 SEMIOSIS AND DYNAMICAL
INCOHERENCE

Clearly, the multi-agent systems with the
requirements above possess elements of both
dynamical coherence and incoherence. The
dynamic laws of the environment (4.1.i) spawn
rules of agent behavior (4.1.ii) which are this way
dynamically coupled to the environment. The
dynamical incoherence occurs because of the
following semiotic requirements:

A. Shared knowledge structures which
persist in the environment through at
least for long intervals of dynamic
production (4.2.vi);

B. The stable memory banks used by
agents to store knowledge are decoupled
from the dynamics of the environment
(4.2.iii);

C. Semantic tokens used by situated
communication, which persist in the
environment, at least for long intervals
of dynamic production, until they are
picked up by agents (4.2.v);

D. The pragmatics of the selection criteria
in an environment (4.1.iii) may erase or
increase the numbers of certain agents,
thus intervening in the dynamics of the
environment in a switch or catalyst-like
manner (non-holonomic constraints
[Pattee, 1973]) 

Note that the asynchrony requirement (4.2.iv)
does not necessarily imply dynamical
incoherence. Discrete-event or schedule-driven
agents may or may not respond to their cue events
or schedules in a dynamically incoherent manner.
If their action and evaluation components are state
determined, as the agents of Ackley and Littman
or the SDS framework, then they are still
dynamically coupled to their environment and its
cues. It is only the semiotic requirements above
which can create a degree of dynamical
incoherency, as memory gets decoupled from
state-determined interaction and selection
constraints the dynamics of an environment
“from-the-outside”. D is clearly a pragmatic
semiotic requirement, whereas A, B, and C are
both semantic and syntactic requirements. The
syntax is not obvious, but it must be subsumed in
the rules of communication agents use to access

shared knowledge structures and participate in a
situated communication process. 

Finally, we can see that semiotic ABM draw from
Discrete-Event Simulation, AI, Complex Systems
and ALife. From Discrete-Event Simulation
[Zeigler 1990], we require asynchrony, but unlike
traditional simulation, we use the distributed ideas
of complex systems, requiring that agents do not
push for or understand an overall goal, which only
emerges from agent interactions. From AI, we
require agents with access to memory structures
(beyond state-determinacy), and semiosis.

6. SIMULATING CCOS

Our research project with the Physical Science
Laboratory at NMSU is intended to simulate the
emergent decision structures in a 911/ERS, seen
as an example of a CCO. CCOs in general are
characterized by a number of properties, including
a large number of units which are hierarchically
organized, both for information flow upward and
command flow downward; where the lowest level
units are individual humans, perhaps in vehicles;
the organization must achieve a goal within a
distinct time and within a physical environment;
and the environment may or may not contain other
organizations with which the CCO interact. At the
time of this writing, we are simultaneously
pursuing initial agent designs consistent with the
concepts outlined above, and evaluating a number
of software platforms for developing prototype
agent simulations, including Swarm,
DEVS/JAVA, and JAMES. 

We conclude by highlighting some issues
particularly important to using our semiotic agent
approach to simulating CCO: 

• Negotiation vs. Situational
Awareness: Within CCO there is an
acting distinction between
"background" communication
("autonomic" traffic) concerning the
situational awareness about the location
of other units, terrain, etc; and
"foreground", direct communication
(whether voice, text, or image) among
units to make reports, give commands,
and otherwise negotiate the current
situation. Background communication,
although also mediated by a digital



network, should be considered a
measurement task (the unit's ability to
observe its environment is augmented
by the digital SA capability), while
foreground communication should be
considered a communication task.

• Hierarchical Organization: The ability
to aggregate information upwards and
distribute command downwards in
CCOs is crucial. We are exploring
alternate forms to strictly hierarchical
tree structures, involving loosely
hierarchical directed acyclic graphs and
flexible structures where command is
assumed temporarily by internal units.
In this way, command becomes
understood as a generalized constraint
on the decision processes of agents.
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